skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohammadipour, Pegah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zero-noise extrapolation (ZNE) is a widely used quantum error mitigation technique that artificially amplifies circuit noise and then extrapolates the results to the noise-free circuit. A common ZNE approach is Richardson extrapolation, which relies on polynomial interpolation. Despite its simplicity, efficient implementations of Richardson extrapolation face several challenges, including approximation errors from the non-polynomial behavior of noise channels, overfitting due to polynomial interpolation, and exponentially amplified measurement noise. This paper provides a comprehensive analysis of these challenges, presenting bias and variance bounds that quantify approximation errors. Additionally, for any precision ε , our results offer an estimate of the necessary sample complexity. We further extend the analysis to polynomial least squares-based extrapolation, which mitigates measurement noise and avoids overfitting. Finally, we propose a strategy for simultaneously mitigating circuit and algorithmic errors in the Trotter-Suzuki algorithm by jointly scaling the time step size and the noise level. This strategy provides a practical tool to enhance the reliability of near-term quantum computations. We support our theoretical findings with numerical experiments. 
    more » « less
    Free, publicly-accessible full text available November 14, 2026